261 research outputs found

    Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer

    Get PDF
    Brownian noise of dielectric mirror coatings is expected to be one of the limiting noise sources, at the peak sensitivity, of next generation ground based interferometric gravitational wave (GW) detectors. The use of higher-order Laguerre–Gauss (LG) beams has been suggested to reduce the effect of coating thermal noise in future generations of gravitational wave detectors. In this paper we describe the first test of interferometry with higher-order LG beams in an environment similar to a full-scale gravitational wave detector. We compare the interferometric performance of higher-order LG modes and the fundamental mode beams, injected into a 10 m long suspended cavity that features a finesse of 612, a value chosen to be typical of future gravitational wave detectors. We found that the expected mode degeneracy of the injected LG3, 3 beam was resolved into a multiple peak structure, and that the cavity length control signal featured several nearby zero crossings. The break up of the mode degeneracy is due to an astigmatism (defined as |Rcy − Rcx|) of 5.25 ± 0.5 cm on one of our cavity mirrors with a radius of curvature (Rc) of 15 m. This observation agrees well with numerical simulations developed with the FINESSE software. We also report on how these higher-order mode beams respond to the misalignment and mode mismatch present in our 10 m cavity. In general we found the LG3, 3 beam to be considerably more susceptible to astigmatism and mode mismatch than a conventional fundamental mode beam. Therefore the potential application of higher-order Laguerre–Gauss beams in future gravitational wave detectors will impose much more stringent requirements on both mode matching and mirror astigmatism

    Experimental demonstration of coupled optical springs

    Get PDF
    Optical rigidity will play an important role in improving the sensitivity of future generations of gravitational wave (GW) interferometers, which employ high laser power in order to reach and exceed the standard quantum limit. Several experiments have demonstrated the combined effect of two optical springs on a single system for very low-weight mirror masses or membranes. In this paper we investigate the complex interactions between multiple optical springs and the surrounding apparatus in a system of comparable dynamics to a large-scale GW detector. Using three 100 g mirrors to form a coupled cavity system capable of sustaining two or more optical springs, we demonstrate a number of different regimes of opto-mechanical rigidity and measurement techniques. Our measurements reveal couplings between each optical spring and the control loops that can affect both the achievable increase in sensitivity and the stability of the system. Hence this work establishes a better understanding of the realisation of these techniques and paves the way to their application in future GW observatories, such as upgrades to Advanced LIGO

    Experimental demonstration of a suspended diffractively coupled optical cavity

    Get PDF
    All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry–Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound–Drever–Hall length sensing and control techniques to maintain the required operating condition

    New Higgs signals induced by mirror fermion mixing effects

    Full text link
    We study the conditions under which flavor violation arises in scalar-fermion interactions, as a result of the mixing phenomena between the standard model and exotic fermions. Phenomenological consequences are discussed within the specific context of a left-right model where these additional fermions have mirror properties under the new SU(2)_R gauge group. Bounds on the parameters of the model are obtained from LFV processes; these results are then used to study the LFV Higgs decays (H --> tau l_j, l_j = e, mu), which reach branching ratios that could be detected at future colliders.Comment: 12 pages, 2 figures, ReVTex4, graphicx, to be published in Phys. Rev.

    Inflation with Ω≠1\Omega \not = 1

    Full text link
    We discuss various models of inflationary universe with Ω≠1\Omega \not = 1. A homogeneous universe with Ω>1\Omega > 1 may appear due to creation of the universe "from nothing" in the theories where the effective potential becomes very steep at large ϕ\phi, or in the theories where the inflaton field ϕ\phi nonminimally couples to gravity. Inflation with Ω<1\Omega < 1 generally requires intermediate first order phase transition with the bubble formation, and with a second stage of inflation inside the bubble. It is possible to realize this scenario in the context of a theory of one scalar field, but typically it requires artificially bent effective potentials and/or nonminimal kinetic terms. It is much easier to obtain an open universe in the models involving two scalar fields. However, these models have their own specific problems. We propose three different models of this type which can describe an open homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly modifie

    Missing for 20 yr: MeerKAT Redetects the Elusive Binary Pulsar M30B

    Get PDF
    PSR J2140−2311B is a 13 ms pulsar discovered in 2001 in a 7.8 hr Green Bank Telescope observation of the core-collapsed globular cluster M30 and predicted to be in a highly eccentric binary orbit. This pulsar has eluded detection since then; therefore, its precise orbital parameters have remained a mystery until now. In this work, we present the confirmation of this pulsar using observations taken with the UHF receivers of the MeerKAT telescope as part of the TRAPUM Large Survey Project. Taking advantage of the beamforming capability of our backends, we have localized it, placing it 1.′2(1) from the cluster center. Our observations have enabled the determination of its orbit: It is highly eccentric (e = 0.879) with an orbital period of 6.2 days. We also measured the rate of periastron advance, ω ̇ = 0.078 ± 0.002 deg yr − 1 . Assuming that this effect is fully relativistic, general relativity provides an estimate of the total mass of the system, M TOT = 2.53 ± 0.08 M ⊙, consistent with the lightest double neutron star systems known. Combining this with the mass function of the system gives the pulsar and companion masses of m p 1.10 M ⊙, respectively. The massive, undetected companion could either be a massive white dwarf or a neutron star. M30B likely formed as a result of a secondary exchange encounter. Future timing observations will allow the determination of a phase-coherent timing solution, vastly improving our uncertainty in ω ̇ and likely enabling the detection of additional relativistic effects, which will determine m p and m

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode
    • …
    corecore